4.7 Article

mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 289, Issue 6, Pages C1457-C1465

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00165.2005

Keywords

muscle growth; ribosome biogenesis

Funding

  1. NIAMS NIH HHS [AR-45617] Funding Source: Medline

Ask authors/readers for more resources

The purpose of this study was to identify the potential downstream functions associated with mammalian target of rapamycin ( mTOR) signaling during myotube hypertrophy. Terminally differentiated myotubes were serum stimulated for 3, 6, 12, 24, and 48 h. This treatment resulted in significant myotube hypertrophy (protein/DNA) and increased RNA content (RNA/DNA) with no changes in DNA content or indices of cell proliferation. During myotube hypertrophy, the increase in RNA content was accompanied by an increase in tumor suppressor protein retinoblastoma (Rb) phosphorylation and a corresponding increase in the availability of the ribosomal DNA transcription factor upstream binding factor (UBF). Serum stimulation also induced an increase in cyclin D1 protein expression in the differentiated myotubes with a concomitant increase in cyclin D1-dependent cyclin-dependent kinase (CDK)-4 activity toward Rb. The increases in myotube hypertrophy and RNA content were blocked by rapamycin treatment, which also prevented the increase in cyclin D1 protein expression, CDK-4 activity, Rb phosphorylation, and the increase in UBF availability. Our findings demonstrate that activation of mTOR is necessary for myotube hypertrophy and suggest that the role of mTOR is in part to modulate cyclin D1-dependent CDK-4 activity in the regulation of Rb and ribosomal RNA synthesis. On the basis of these results, we propose that common molecular mechanisms contribute to the regulation of myotube hypertrophy and growth during the G(1) phase of the cell cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available