4.3 Article

Free energy landscape and folding mechanism of a β-hairpin in explicit water:: A replica exchange molecular dynamics study

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 61, Issue 4, Pages 795-808

Publisher

WILEY
DOI: 10.1002/prot.20696

Keywords

beta-hairpin; folding mechanism; principal component analysis; replica exchange simulation

Ask authors/readers for more resources

The free energy landscape and the folding mechanism of the C-terminal P-hairpin of protein G is studied by extensive replica exchange molecular dynamics simulations (40 replicas and 340 ns total simulation time), using the GROMOS96 force field and the SPC explicit water solvent. The study reveals that the system preferentially adopts a beta-hairpin structure at biologically important temperatures, and that the helix content is low at all temperatures studied. Representing the free energy landscape as a function of several types of reaction coordinates, four local minima corresponding to the folded, partially folded, molten globule, and unfolded states are identified. The findings suggest that the folding of the beta-hairpin occurs as the sequence: collapse of hydrophobic core -> formation of H-bond -> formation of the turn. Identifying the folded and molten globule states as the main conformations, the free energy landscape of the beta-hairpin is consistent with a two-state behavior with a broad transition state. The temperature dependence of the folding-unfolding transition is investigated in some detail. The enthalpy and entropy jumps at the folding transition temperature are found to be about three times lower than the experimental estimates, indicating that the folding-unfolding transition in silico is less cooperative than its in vitro counterpart.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available