4.6 Article

Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00170.2005

Keywords

-

Funding

  1. NCRR NIH HHS [S10 RR 16650, M01 RR 00043] Funding Source: Medline
  2. NIAMS NIH HHS [R01 AR049877, R01 AR 049877] Funding Source: Medline
  3. NIA NIH HHS [R01 AG 18311, R01 AG018311-06, P30 AG024832, R01 AG018311] Funding Source: Medline

Ask authors/readers for more resources

Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 +/- 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 +/- 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol.min(-1).100 g leg muscle(-1)) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 +/- 3% in the HE group but only 9 +/- 2% in the LE group (P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater (P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 +/- 12 to 35 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 +/- 6 to 30 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and increased (P < 0.05) in the LE group (41 +/- 9 to 114 +/- 26 nmol.min(-1).100 g leg muscle(-1)). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available