4.7 Article

Droplet motion with phase change in a temperature gradient

Journal

PHYSICAL REVIEW E
Volume 72, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.066304

Keywords

-

Ask authors/readers for more resources

We examine the droplet motion in one-component fluids in a small temperature gradient by solving linearized hydrodynamic equations supplemented with appropriate surface boundary conditions. We show that the velocity field and the temperature around the droplet are strongly influenced by first-order phase transition taking place at the interface. Latent heat released or absorbed at the interface drastically changes the hydrodynamic flow around the droplet. As a result, the temperature becomes almost homogeneous inside the droplet and the Marangoni effect arising from the surface tension gradient is much suppressed. The droplet velocity is also much decelerated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available