4.7 Article

Senescence is accelerated, and several proteases are induced by carbon feast conditions in barley (Hordeum vulgare L.) leaves

Journal

PLANTA
Volume 222, Issue 6, Pages 989-1000

Publisher

SPRINGER
DOI: 10.1007/s00425-005-0042-x

Keywords

carbon feast; Hordeum vulgare L; protease; proteolysis; senescence

Categories

Ask authors/readers for more resources

Leaf senescence is characterized by nitrogen remobilization to developing seeds of annual plants, or surviving organs of perennial species. It has been demonstrated that high carbohydrate levels (carbon feast) are associated with the onset of the senescence process. Therefore, the development of model systems allowing the manipulation of leaf carbohydrates constitutes a logical first step in the investigation of processes important during early phases of senescence, such as plastidial protein degradation. In this study, sugar accumulation was induced either by the incubation of excised, mature barley (Hordeum vulgare L.) leaves under relatively strong light, or by the interruption of sieve tubes at the base of the leaf lamina by steam-girdling. Accelerated chlorophyll degradation and net proteolysis confirmed successful senescence induction in both model systems, but suggested that girdled leaves are more useful than excised leaves to study proteolysis. Activities or transcript levels of several proteolytic enzymes, including plastidial (aminopeptidases, Clp protease), cytosolic (proteasome) and vacuolar (thiol proteases, an aspartic protease and a serine carboxypeptidase) proteases were clearly induced under these conditions; some of these genes also reacted to other stimuli such as leaf excision. The most interesting finding was the specific induction of a carboxypeptidase gene (cp-mIII) in girdled leaves accumulating high carbohydrate levels. As a previous study from our laboratory, using a genetic approach, has indicated that one or several carboxypeptidases are involved in leaf N remobilization, the detailed characterization of cp-mIII (and, possibly, closely related genes) may considerably improve our understanding of whole-plant N recycling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available