4.8 Article

Interruption of homologous desensitization in cyclic guanosine 3′,5′-monophosphate signaling restores colon cancer cytostasis by bacterial enterotoxins

Journal

CANCER RESEARCH
Volume 65, Issue 23, Pages 11129-11135

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-2381

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA75123, CA95026] Funding Source: Medline

Ask authors/readers for more resources

Bacterial diarrheagenic heat-stable enterotoxins induce colon cancer cell cytostasis by targeting guanylyl cyclase C (GCC) signaling. Anticancer actions of these toxins are mediated by cyclic guanosine 3',5'-monophosphate (cGMP)-dependent influx of Ca2+ through cyclic nucleotide-gated channels. However, prolonged stimulation of GCC produces resistance in tumor cells to heat-stable enterotoxin-induced cytostasis. Resistance reflects rapid (tachyphylaxis) and slow (bradyphylaxis) mechanisms of desensitization induced by cGMP. Tachyphylaxis is mediated by cGMP-dependent protein kinase, which limits the conductance of cyclic nucleotide-gated channels, reducing the influx of Ca2+ propagating the antiproliferative signal front the membrane to the nucleus. In contrast, bradyphylaxis is mediated by cGMP-dependent allosteric activation of phosphodiesterase 5, which shapes the amplitude and duration of heat-stable enterotoxin-dependent cyclic nucleotide accumulation required for cytostasis. Importantly, interruption of tachyphylaxis and bradyphylaxis restores cancer cell cytostasis induced by heat-stable enterotoxins. Thus, regimens that incorporate cytostatic bacterial enterotoxins and inhibitors of cGMP-mediated desensitization offer a previously unrecognized therapeutic paradigm for treatment and prevention of colorectal cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available