4.6 Article

The effects of copper phthalocyanine purity on organic solar cell performance

Journal

ORGANIC ELECTRONICS
Volume 6, Issue 5-6, Pages 242-246

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2005.09.001

Keywords

-

Ask authors/readers for more resources

The performance of small-molecular weight organic double heterojunction donor-acceptor bilayer solar cells is studied as a function of the purity of the donor material, copper phthalocyanine (CuPc). We find that the power conversion efficiency under simulated AM1.5G, 1 sun illumination conditions increases from (0.26 +/- 0.01)% to (1.4 +/- 0. 1)% as the CuPc layer purity increases. Concomitant with the improvements in power conversion efficiency, we find that the hole mobility of the unpurified CuPc is nearly three orders of magnitude lower than for purified source material. Mass spectrometry and Fourier transform infrared spectroscopy are used to identify metal-free phthalocyanine as the primary impurity that degrades both device efficiency and hole mobility. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available