4.0 Article Proceedings Paper

The sleep cycle modelled as a cortical phase transition

Journal

JOURNAL OF BIOLOGICAL PHYSICS
Volume 31, Issue 3-4, Pages 547-569

Publisher

SPRINGER
DOI: 10.1007/s10867-005-1285-2

Keywords

cortical model; sleep cycle; adenosine; acetylcholine; phase transition; SWS; REM; EEG; Langevin equation; fluctuations; correlation; critical slowing down

Categories

Ask authors/readers for more resources

We present a mean-field model of the cortex that attempts to describe the gross changes in brain electrical activity for the cycles of natural sleep. We incorporate within the model two major sleep modulatory effects: slow changes in both synaptic efficiency and in neuron resting voltage caused by the similar to 90-min cycling in acetylcholine, together with even slower changes in resting voltage caused by gradual elimination during sleep of somnogens (fatigue agents) such as adenosine. We argue that the change from slow-wave sleep (SWS) to rapid-eye-movement (REM) sleep can be understood as a first-order phase transition from a low-firing, coherent state to a high-firing, desychronized cortical state. We show that the model predictions for changes in EEG power, spectral distribution, and correlation time at the SWS-to-REM transition are consistent not only with those observed in clinical recordings of a sleeping human subject, but also with the on-cortex EEG patterns recently reported by Destexhe et al. [J. Neurosci. 19(11), (1999) 4595-4608] for the sleeping cat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available