4.4 Article Proceedings Paper

Spatial coherence of the heat release fluctuations in turbulent jet and swirl flames

Journal

FLOW TURBULENCE AND COMBUSTION
Volume 75, Issue 1-4, Pages 29-50

Publisher

SPRINGER
DOI: 10.1007/s10494-005-8586-1

Keywords

combustion noise; spatial coherence; HS-LIF; chemiluminescence probe

Ask authors/readers for more resources

The noise generation of turbulent flames is governed by temporal changes of the total flame volume due to local heat release fluctuations. On the basis of the wave equation an expression for the relationship between the acoustic power and the heat release fluctuations is derived and a correlation function is obtained which reveals that the sound pressure level of flames is governed by the spatial coherence. Noise models rely on precise coherence information in terms of characteristic length scales, which are the measure of the acoustic efficiency of the flame. Since the published length scale information is scarce and inconsistent, length scales were measured for a number of laboratory flames using two measurement techniques developed for this purpose: A planar LIF-system with a repetition rate of 1 kHz acquires the instantaneous flame front position and heat release, whereas two chemiluminescence probes with an optics confining the measurement volume to a line of sight provide further spatial correlation data. For all flames investigated the length scales are smaller than the height of the burner exit annulus and they are of the order of the local flame brush thickness. Using the measured length scales, the coherent volume and the efficiency of the noise generation are calculated, which are three orders of magnitude higher than measured. However, the proper order of magnitude is obtained, if only the measured fluctuating part of the thermal power is used in the model and if the periodic formation of local zones with heat release overshoot and deficit are properly incorporated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available