4.8 Article

Brain signals for spatial attention predict performance in a motion discrimination task

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0504678102

Keywords

functional MRI; performance variability; cue utilization; reward

Funding

  1. NIMH NIH HHS [R01 MH071920, MH 71920-06] Funding Source: Medline

Ask authors/readers for more resources

The reliability of visual perception is thought to reflect the quality of the sensory information. However, we show that subjects' performance can be predicted, trial-by-trial, by neural activity that precedes the onset of a sensory stimulus. Using functional MRI (fMRI), we studied how neural mechanisms that mediate spatial attention affect the accuracy of a motion discrimination judgment. The amplitude of blood oxygen level-dependent (BOLD) signals after a cue directing spatial attention predicted subjects' accuracy on 60-75% of the trials. Widespread predictive signals, which included dorsal parietal, visual extra-striate, prefrontal and sensory-motor cortex, depended on whether the cue correctly specified the stimulus location. Therefore, these signals indicate the degree of utilization of the cued information and play a role in the control of spatial attention. We conclude that variability in perceptual performance can be partly explained by the variability in endogenous, preparatory processes and that BOLD signals can be used to forecast human behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available