4.7 Article

Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 49, Pages 11231-11238

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1724-05.2005

Keywords

serotonin; sleep; mice; 5-HT2 receptors; sleep deprivation; apnea; respiration; serotonergic; depression; knock-out mice; EEG

Categories

Ask authors/readers for more resources

Serotonin (5-hydroxytryptamine; 5-HT) plays key roles in sleep-wakefulness regulation. Evidence indicates that 5-HT2 receptors are involved mainly in non-rapid eye movement sleep (NREMS) regulation and respiratory control. Here, we investigated the relative contribution of 5-HT2A, 5-HT2B, and 5-HT2C receptor subtypes to NREMS and breathing during sleep, using 5-HT2 subtype-selective ligands in wild-type (5-HT2A+/+) and knock-out (5-HT2A-/-) mice that do not express 5-HT2A receptors. Acute blockade of 5-HT2A receptors induced an increase in NREMS in 5-HT2A+/+ mice, but not 5-HT2A-/- mutants, which spontaneously expressed lessNREMS than wild-type animals. In 5-HT2A+/+ mice, 5-HT2B receptor blockade produced a reduction of NREMS, whereas receptor activation induced an increase in this sleep stage. These effects were less pronounced in 5-HT2A+/+ mice, indicating a lower sensitivity of 5-HT2B receptors in mutants, with no change in 5-HT2B mRNA. Blockade of 5-HT2C receptors had no effect on NREMS in both strains. In addition, an increase in EEG power density after sleep deprivation was observed in 5-HT2A+/+ mice but not in 5-HT2A-/- mice. Whole-body plethysmographic recordings indicated that 5-HT2A receptor blockade in 5-HT2A+/+ mice reduced NREMS apneas and bradypneas that occurred after sighs. In contrast, in 5-HT2A+/+ mutants, NREMS apneas were not modified, and bradypnea after sighs were more pronounced. Our results demonstrate that 5-HT exerts a 5-HT2B-mediated facilitation of NREMS, and an influence respectively inhibitory on NREMS and facilitatory on sleep apnea generation, via 5-HT2A receptors. Moreover, 5-HT2A gene knock-out leads to functional compensations yielding adaptive changes opposite to those caused by pharmacological blockade of 5-HT2A receptors in 5-HT2A+/+ mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available