4.7 Article

Oxytocin modulates neural circuitry for social cognition and fear in humans

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 49, Pages 11489-11493

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3984-05.2005

Keywords

amygdala; social cognition; human; fMRI; oxytocin; fear

Categories

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

In non-human mammals, the neuropeptide oxytocin is a key mediator of complex emotional and social behaviors, including attachment, social recognition, and aggression. Oxytocin reduces anxiety and impacts on fear conditioning and extinction. Recently, oxytocin administration in humans was shown to increase trust, suggesting involvement of the amygdala, a central component of the neurocircuitry of fear and social cognition that has been linked to trust and highly expresses oxytocin receptors in many mammals. However, no human data on the effects of this peptide on brain function were available. Here, we show that human amygdala function is strongly modulated by oxytocin. We used functional magnetic resonance imaging to image amygdala activation by fear-inducing visual stimuli in 15 healthy males after double-blind crossover intranasal application of placebo or oxytocin. Compared with placebo, oxytocin potently reduced activation of the amygdala and reduced coupling of the amygdala to brainstem regions implicated in autonomic and behavioral manifestations of fear. Our results indicate a neural mechanism for the effects of oxytocin in social cognition in the human brain and provide a methodology and rationale for exploring therapeutic strategies in disorders in which abnormal amygdala function has been implicated, such as social phobia or autism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available