4.7 Article

Dual modes of modification of hepatitis A virus 3C protease by a serine-derived β-lactone:: Selective crystallization and formation of a functional catalytic triad in the active site

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 354, Issue 4, Pages 854-871

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.09.074

Keywords

hepatitis A; picornavirus; 3C protease; inhibitor and antiviral drug design; beta-lactone

Ask authors/readers for more resources

Hepatitis A virus (HAV) 3C proteinase is a member of the picornain cysteine proteases responsible for the processing of the viral polyprotein, a function essential for viral maturation and infectivity. This and its structural similarity to other 3C and 3C-like proteases make it an attractive target for the development of antiviral drugs. Previous solution NMR studies have shown that a Cys24Ser (C24S) variant of HAV 3C protein, which displays catalytic properties indistinguishable from the native enzyme, is irreversibly inactivated by N-benzyloxycarbonyl-L-serine-beta-lactone (1a) through alkylation of the sulfur atom at the active site., Cys172. However, crystallization of an enzyme-inhibitor adduct from the reaction mixture followed by X-ray structural analysis shows only covalent modification of the epsilon 2-nitrogen of the surface His102 by the beta-lactone with no reaction at Cys172. Re-examination of the heteronuclear multiple quantum coherence (HMQC) NMR spectra of the enzyme-inhibitor mixture indicates that dual modes of single covalent modification occur with a >= 3:1 ratio of S-alkylation of Cys172 to N-alkylation of His102. The latter product crystallizes readily, probably due to the interaction between the phenyl ring of the N-benzyloxycarbonyl (N-Cbz) moiety and a hydrophobic pocket of a neighboring protein molecule in the crystal. Furthermore, significant structural changes are observed in the active site of the 3C protease, which lead to the formation of a functional catalytic triad with Asp84 accepting one hydrogen bond from His44. Although the 3C protease modified at Cys172 is catalytically inactive, the singly modified His102 N-epsilon 2-alkylated protein displays a significant level of enzymatic activity which can be further modified/inhibited by N-iodoacetyl-valine-phenylalanine-amide (IVF) (in solution and in crystal) or excessive amount of the same beta-lactone inhibitor (in solution). The success of soaking IVF into HAV 3C-1a crystals demonstrates the usefulness of this new crystal form in the study of enzyme-inhibitor interactions in the proteolytic active site. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available