4.6 Article

Structure of the unphosphorylated STAT5a dimer

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 49, Pages 40782-40787

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M507682200

Keywords

-

Ask authors/readers for more resources

STAT proteins have the function of signaling from the cell membrane into the nucleus, where they regulate gene transcription. Latent mammalian STAT proteins can form dimers in the cytoplasm even before receptor-mediated activation by specific tyrosine phosphorylation. Here we describe the 3.21-angstrom crystal structure of an unphosphorylated STAT5a homodimer lacking the N-terminal domain as well as the C-terminal transactivation domain. The overall structure of this fragment is very similar to phosphorylated STATs. However, important differences exist in the dimerization mode. Although the interface between phosphorylated STATs is mediated by their Src-homology 2 domains, the unphosphorylated STAT5a fragment dimerizes in a completely different manner via interactions between their beta-barrel and four-helix bundle domains. The STAT4 N-terminal domain dimer can be docked onto this STAT5a core fragment dimer based on shape and charge complementarities. The separation of the dimeric arrangement, taking place upon activation and nuclear translocation of STAT5a, is demonstrated by fluorescence resonance energy transfer experiments in living cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available