3.8 Review

Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption

Journal

JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
Volume 38, Issue 49, Pages 10731-10760

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0305-4470/38/49/017

Keywords

-

Ask authors/readers for more resources

We review recent progress in analysing wave scattering in systems with both intrinsic chaos and/or disorder and internal losses, when the scattering matrix is no longer unitary. By mapping the problem onto a nonlinear supersymmetric sigma-model, we are able to derive closed-form analytic expressions for the distribution of reflection probability in a generic disordered system. One of the most important properties resulting from such an analysis is statistical independence between the phase and the modulus of the reflection amplitude in every perfectly open channel. The developed theory has far-reaching consequences for many quantities of interest, including local Green functions and time delays. In particular, we point out the role played by absorption as a sensitive indicator of mechanisms behind the Anderson localization transition. We also provide a random-matrix-based analysis of S-matrix and impedance correlations for various symmetry classes as well as the distribution of transmitted power for systems with broken time-reversal invariance, completing previous works on the subject. The results can be applied, in particular, to the experimentally accessible impedance and reflection in a microwave or an ultrasonic cavity attached to a system of antennas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available