4.6 Article

Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 569, Issue 3, Pages 751-760

Publisher

WILEY
DOI: 10.1113/jphysiol.2005.097477

Keywords

-

Funding

  1. NCRR NIH HHS [P20RR016816, P20 RR016816] Funding Source: Medline
  2. NIMH NIH HHS [R01 MH066958, MH066958] Funding Source: Medline
  3. NINDS NIH HHS [R01 NS023002, NS23002] Funding Source: Medline

Ask authors/readers for more resources

Exogenous cannabinoids have been shown to significantly alter neuroendocrine output, presaging the emergence of endogenous cannabinoids as important signalling molecules in the neuroendocrine control of homeostatic and reproductive functions, including the stress response, energy metabolism and gonadal regulation. We showed recently that magnocellular and parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus and supraoptic nucleus (SON) respond to glucocorticoids by releasing endocannabinoids as retrograde messengers to modulate the synaptic release of glutamate. Here we show directly for the first time that both of the main endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are released in an activity-dependent fashion from the soma/dendrites of SON magnocellular neurones and suppress synaptic glutamate release and postsynaptic spiking. Cannabinoid reuptake blockade increases activity-dependent endocannabinoid levels in the region of the SON, and results in the inhibition of synaptically driven spiking activity in magnocellular neurones. Together, these findings demonstrate an activity-dependent release of AEA and 2-AG that leads to the suppression of glutamate release and that is capable of shaping spiking activity in magnocellular neurones. This activity-dependent regulation of excitatory synaptic input by endocannabinoids may play a role in determining spiking patterns characteristic of magnocellular neurones under stimulated conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available