4.6 Article

Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction

Journal

HYDROLOGICAL PROCESSES
Volume 19, Issue 19, Pages 3819-3835

Publisher

WILEY
DOI: 10.1002/hyp.5983

Keywords

artificial neural networks; ensemble neural network; ensemble streamflow prediction; probabilistic forecasting; rainfall-runoff model

Ask authors/readers for more resources

Previous ensemble streamflow prediction (ESP) studies in Korea reported that modelling error significantly affects the accuracy of the ESP probabilistic winter and spring (i.e. dry season) forecasts, and thus suggested that improving the existing rainfall-runoff model, TANK, would be critical to obtaining more accurate probabilistic forecasts with ESP. This study used two types of artificial neural network (ANN), namely the single neural network (SNN) and the ensemble neural network (ENN), to provide better rainfall-runoff simulation capability than TANK, which has been used with the ESP system for forecasting monthly inflows to the Daecheong multipurpose dam in Korea. Using the bagging method, the ENN combines the outputs of member networks so that it can control the generalization error better than an SNN. This study compares the two ANN models with TANK with respect to the relative bias and the root-mean-square error. The overall results showed that the ENN performed the best among the three rainfall-runoff models. The ENN also considerably improved the probabilistic forecasting accuracy, measured in terms of average hit score, half-Brier score and hit rate, of the present ESP system that used TANK. Therefore, this study concludes that the ENN would be more effective for ESP rainfall-runoff modelling than TANK or an SNN. Copyright (c) 2005 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available