4.5 Article

MD simulations of the binding of alcohols and Diols by a calixarene in water: Connections between microscopic and macroscopic properties

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 49, Pages 23579-23587

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp054925i

Keywords

-

Ask authors/readers for more resources

We report results of molecular dynamics (MD) simulations of the complexes of p-sulfonatocalix[4]arene with linear alcohols from ethanol to heptanol in water at 25 degrees C. We show that these complexes are of the inclusion type and are governed by van der Waals interactions between the calixarene cavity and the inserted alkyl chain of the alcohol. We establish a correlation between the experimental Delta H-r degrees values and the number of atoms inserted into the calixarene cavity. We also focus on the desolvation of the host and guest to establish the importance, at the enthalpic level, of the formation of hydrogen bond bridges between the calixarene and the alcohol molecule. The fact that methanol is not complexed by p-sulfonatocalix[4]arene is explained by calculating the cost of the desolvation of the guest upon complexation. We complete this study by modeling the complexes formed with 1,4-butanediol and 1,5-pentanediol. To explain the difference between the thermodynamic properties for the binding of 1,4-butanediol and butanol, we examine the insertion rate and the solvation of each hydroxy group. We show a specific behavior of one of the two hydroxy groups at the structural and energetic levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available