4.8 Article

Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo

Journal

CANCER RESEARCH
Volume 65, Issue 24, Pages 11631-11638

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-1093

Keywords

-

Categories

Funding

  1. NCI NIH HHS [P50-CA58207, CA097257] Funding Source: Medline

Ask authors/readers for more resources

We previously reported the development of epidermal growth factor receptor (EGFR)-targeted immunoliposomes that bind and internalize in tumor cells which overexpress EGFR and/or mutant EGFR variant III (EGFRvIII), enabling intracellular delivery of potent anticancer agents in vitro. We now describe in vivo proof-of-concept for this approach for the delivery of multiple anticancer drugs in EGFR-overexpressing tumor models. Anti-EGFR immunoliposomes were constructed modularly with Fab'fragments of cetuximab (IMC-C225), covalently linked to liposomes containing probes and/or anticancer drugs. Pharmacokinetic and biodistribution studies confirmed long circulation times (t(1/2) = 21 hours) and efficient accumulation in tumors (up to 15% ID/g) irrespective of the presence of the targeting ligand. Although total accumulations of anti-EGFR immunoliposomes and nontargeted liposomes in EGFR-overexpressing tumors were comparable, only immunoliposomes internalized extensively within tumor cells (92% of analyzed cells versus < 5% for nontargeted liposomes), indicating different mechanisms of delivery at the cellular level. In vivo therapy studies in a series of xenograft models featuring overexpression of EGFR and/or EGFRvIII showed the superiority of immunoliposomal delivery of encapsulated drugs, which included doxorubicin, epirubicin, and vinorelbine. For each of these drugs, anti-EGFR immunoliposome delivery showed significant antitumor effects and was significantly superior to all other treatments, including the corresponding free or liposomal drug (P < 0.001-0.003). We conclude that anti-EGFR immunoliposomes provide efficient and targeted drug delivery of anticancer compounds and may represent a useful new treatment approach for tumors that overexpress the EGFR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available