4.5 Article

Synthesis of nanocrystalline spinel CoFe2O4 via a polymer-pyrolysis route

Journal

PHYSICA B-CONDENSED MATTER
Volume 370, Issue 1-4, Pages 14-21

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physb.2005.08.030

Keywords

cobalt ferrite; polyacrylate salt; pyrolysis; magnetization; coercivity

Ask authors/readers for more resources

Nanocrystalline CoFe2O4 spinel ferrites were synthesized via the pyrolysis of polyacrylate salt precursors prepared by in situ polymerization of metal salts and acrylic acid. The pyrolytic behaviors of the polymeric precursors were analyzed by use of simultaneous thermogravimetric and differential thermal analysis (TG-DTA). The structural characteristics of the calcined products were obtained by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscope (TEM). The results revealed that cobalt ferrites had nano-sized morphology and good crystallinity even if calcined at moderate temperature like 500 degrees C for 3 h. The average size of nanocrystalline cobalt ferrites ranged from 20 to 30 nm with a narrow size distribution, while the particle size increased with the increase of the calcination temperature. Magnetic properties were obtained at room temperature using a vibrating sample magnetometer. The samples exhibited hysteresis loop typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure could exist in the mixed spinel system. The as-calcined cobalt ferrites at 500 degrees C exhibited the highest magnetization value of 77.4 emu/g at 10 kOe, while the highest remanence and coercivity of 35.6 emu/g and 1445 Oe, respectively, for those calcined at 700 C were obtained. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available