4.8 Article

Molecular dynamics Simulations of alkylsilane stationary-phase order and disorder. 2. Effects of temperature and chain length

Journal

ANALYTICAL CHEMISTRY
Volume 77, Issue 24, Pages 7862-7871

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac051085v

Keywords

-

Ask authors/readers for more resources

In an effort to elucidate the molecular-level structural features that control shape-selective separations, we have investigated the molecular dynamics of chromatographic models that represent both monomeric and polymeric stationary phases with alkylsilane length and temperature conditions analogous to actual materials of low to high shape selectivity. The structural characterization of these models is consistent with previous experimental observations of alkyl chain order and disorder: alkyl chain order increases both with alkyl chain length and with reduced temperature. Models that represent shape-selective reversed-phase liquid chromatography (RPLC) phases possess a significant region of distal end chain order with primarily trans dihedral angle conformations; the extension of these ordered regions into the phase increases with an increase in chain length. Models with extended chain length (C-30) possess a higher degree of conformational order and are relatively insensitive to changes in surface coverage, bonding chemistry, and temperature. Chromatography models of various chain lengths and over a temperature range that represents highly shape-selective RPLC stationary phases all contain a series of well-defined and rigid cavities; the size and depth of these slots increase for the C-30 models, which may promote the enhanced separations of larger size shape-constrained solutes, such as carotenoids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available