4.6 Article

Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 209, Issue 3, Pages 269-276

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2005.04.016

Keywords

peroxynitrite; rat aorta; relaxation; oxidants; reactive oxygen species; cGMP; hyperpolarization

Funding

  1. NIAAA NIH HHS [AA-08674] Funding Source: Medline

Ask authors/readers for more resources

The present study was designed to evaluate the effects of peroxynitrite (ONOO-), the product of superoxide and nitric oxide, on isolated segments of rat aorta. In the absence of any vasoactive agent, ONOO- (from 10(-8) to 10(-4) M) failed to alter the basal tension. In phenylephrine (PE; 5 x 10(-7) M)-precontracted rat aortic rings (RAR), ONOO- elicited concentration-dependent relaxation at concentrations of from 10(-8) to 10(-4) M. The effective concentrations producing approximately 50% of maximal relaxation (ED50) to ONOO- were 1.84 x 10(-5) M and 1.96 x 10(-5) M in intact and denuded RAR, respectively (P > 0.05). No significant differences in the relaxation responses were found between RAR with or without endothelium (P > 0.05). The presence of either 5 mu M methylene blue (MB) or 5 mu M 1H-[1,2,4]oxadiazolo-[4,3-alpha]quinoxalin-1-one (ODQ) significantly inhibited the relaxations induced by ONOO-. Sildenafil (10(-7) M), on the other hand, significantly potentiated the ONOO--induced relaxations. Tetraethyl ammonium chloride (T-2265) significantly decreased the ONOO--induced relaxations in a concentration-dependent manner. However, ONOO- had no effect on RAR precontracted by high KCL (40 mM, n = 6, P > 0.05). Addition of calyculin A also significantly decreased the ONOO--induced relaxation in a dose-dependent manner. Furthermore, ONOO- significantly inhibited calcium-induced contractions of K+-depolarized aortic rings in a concentration-related manner. Lastly, a variety of other pharmacological agents and antagonists including L-NMMA, L-arginine, indomethacin, atropine, naloxone, diphenhydramine, cimetine, glibenclamide, haloperidol, superoxide dismutase (SOD), and catalase did not influence the relaxant effects of ONOO- on RAR. Our new results suggest that ONOO--triggered relaxation on rat aortic rings is mediated by elevation of cGMP levels, membrane hyperpolarization via K+-channel activation, activation of myosin phosphatase activity, and interference with calcium movement and cellular membrane Ca2+ entry. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available