4.5 Article

How does surface modification aid in the dispersion of carbon nanofibers?

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 49, Pages 23351-23357

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp055129f

Keywords

-

Ask authors/readers for more resources

Small-angle light scattering is used to assess the dispersion behavior of vapor-grown carbon nanofibers suspended in water. These data provide the first insights into the mechanism by which surface treatment promotes dispersion. Both acid-treated and untreated nanofibers exhibit hierarchical morphology consisting of small-scale aggregates (small bundles) that agglomerate to form fractal clusters that eventually precipitate. Although the morphology of the aggregates and agglomerates is nearly independent of surface treatment, their time evolution is quite different. The time evolution of the small-scale bundles is studied by extracting the size distribution from the angle-dependence of the scattered intensity, using the maximum entropy method in conjunction with a simplified tube form factor. The bundles consist of multiple tubes possibly aggregated side-by-side. Acid oxidation has little effect on this bundle morphology. Rather acid treatment inhibits agglomeration of the bundles. The time evolution of agglomeration is followed by fitting the scattering data to a generalized fractal model. Agglomerates appear immediately after cessation of sonication for untreated fibers but only after hours for treated fibers. Eventually, however, both systems precipitate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available