4.8 Article

Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0509371102

Keywords

antimicrobial; bacteriocin; chirality

Ask authors/readers for more resources

As a general rule, ribosomally synthesized polypeptides contain amino acids only in the L-isoform in an order dictated by the coding DNA/RNA. Two of a total of only four examples Of L to D conversions in prokaryotic systems occur in posttranslationally modified antimicrobial peptides called lantibiotics. In both examples (lactocin S and lacticin 3147), ribosomally encoded L-serines are enzymatically converted to D-alanines, giving rise to an apparent mistranslation of serine codons to alanine residues. It has been suggested that this conversion results from a two-step reaction initiated by a lantibiotic synthetase converting the gene-encoded L-serine to clehydroalanine (dha). By using lacticin 3147 as a model system, we report the identification of an enzyme, LtnJ, that is responsible for the conversion of dha to D-alanine. Deletion of this enzyme results in the residues remaining as dha intermediates, leading to a dramatic reduction in the antimicrobial activity of the producing strain. The importance of the chirality of the three D-alanines present in lacticin 3147 was confirmed when these residues weir systematically substituted by L-alanines. In addition, substitution with L-threonine (ultimately modified to dehydrobutyrine), glycine, or L-valine also resulted in diminished peptide production and/or relative activity, the extent of which depended on the chirality of the newly incorporated amino acid(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available