4.6 Article

Soft or hard ionization of molecules in helium nanodroplets? An electron impact investigation of alcohols and ethers

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 7, Issue 24, Pages 4082-4088

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b511628g

Keywords

-

Ask authors/readers for more resources

Electron impact (70 eV) mass spectra of a series of C-1-C-6 alcohols encased in large superfluid liquid helium nanodroplets (similar to 60000 helium atoms) have been recorded. The presence of helium alters the fragmentation patterns when compared with the gas phase, with some ion product channels being more strongly affected than others, most notably cleavage of the C-alpha-H bond in the parent ion to form the corresponding oxonium ion. Parent ion intensities are also enhanced by the helium, but only for the two cyclic alcohols studied, cyclopentanol and cyclohexanol, is this effect large enough to transform the parent ion from a minor product (in the gas phase) into the most abundant ion in the helium droplet experiments. To demonstrate that these findings are not unique to alcohols, we have also investigated several ethers. The results obtained for both alcohols and ethers are difficult to explain solely by rapid cooling of the excited parent ions by the surrounding superfluid helium, although this undoubtedly takes place. A second factor also seems to be involved, a cage effect which favors hydrogen atom loss over other fragmentation channels. The set of molecules explored in this work suggest that electron impact ionization of doped helium nanodroplets does not provide a sufficiently large softening effect to be useful in analytical mass spectrometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available