4.6 Article

Plasma evolution during metal ablation with ultrashort laser pulses

Journal

OPTICS EXPRESS
Volume 13, Issue 26, Pages 10597-10607

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPEX.13.010597

Keywords

-

Categories

Ask authors/readers for more resources

We report on time-resolved measurements of the plasma evolution during metal ablation with ultrashort laser pulses in the range from 200 fs to 3.3 ps. The plasma transmission exhibits two distinctive minima. Almost total attenuation is observed a few nanoseconds after the ablation pulse, while a second decrease of the transmission to approximately 50% is observed after about 150 ns. Images taken with a gated ICCD-camera confirm these data and allow determining the expansion velocity of the plasma plume. The attenuation in the first nanoseconds can be attributed to electrons and sublimated mass emitted from the target surface, while attenuation after several 10 ns is due to particles and droplets after a thermal boiling process. The possibility of a normal or an explosive boiling process, also called phase explosion, is discussed. Despite of the physical insight into the ablation process, these data provide valuable information for scaling the speed of ultrashort pulse laser materials processing in a fluence regime of several J/cm(2) since they allow estimating the maximum usable pulse repetition rate. (c) 2005 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available