4.7 Article

Vibrational predissociation spectroscopy of the (H2O)-6-21clusters in the OH stretching region:: Evolution of the excess electron-binding signature into the intermediate cluster size regime -: art. no. 244311

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 123, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2134701

Keywords

-

Ask authors/readers for more resources

We report vibrational predissociation spectra of the (H2O)(n)(-) cluster ions in the OH stretching region to determine whether the spectral signature of the electron-binding motif identified in the smaller clusters [Hammer et al. Science 306, 675 (2004)] continues to be important in the intermediate size regime (n=7-21). This signature consists of a redshifted doublet that dominates the OH stretching region, and has been traced primarily to the excitation of a single water molecule residing in a double H-bond acceptor (AA) binding site, oriented with both of its H atoms pointing toward the excess electron cloud. Strong absorption near the characteristic AA doublet is found to persist in the spectra of the larger clusters, but the pattern evolves into a broadened triplet around n=11. A single free OH feature associated with dangling hydrogen atoms on the cluster surface is observed to emerge for n >= 15, in sharp contrast to the multiplet pattern of unbonded OH stretches displayed by the H+.(H2O)(n) clusters throughout the n=2-29 range. We also explore the vibration-electronic coupling associated with normal-mode displacements of the AA molecule that most strongly interact with the excess electron. Specifically, electronic structure calculations on the hexamer anion indicate that displacement along the -OH2 symmetric stretching mode dramatically distorts the excess electron cloud, thus accounting for the anomalously large oscillator strength of the AA water stretching vibrations. We also discuss these vibronic interactions in the context of a possible relaxation mechanism for the excited electronic states involving the excess electron. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available