4.6 Article

The Ste20-like kinase SLK is required for cell cycle progression through G2

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 51, Pages 42383-42390

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M510763200

Keywords

-

Ask authors/readers for more resources

We have previously shown that the Ste20-like kinase SLK is a microtubule-associated protein that can regulate actin reorganization during cell adhesion and spreading (Wagner, S., Flood, T. A., O'Reilly, P., Hume, K., and Sabourin, L. A. ( 2002) J. Biol. Chem. 277, 37685-37692). Because of its association with the microtubule network, we investigated whether SLK plays a role in cell cycle progression, a process that requires microtubule dynamics during mitosis. Consistent with microtubule association in exponentially growing cells, our results showed that SLK co-localizes with the mitotic spindle in cells undergoing mitosis. Expression of a kinase-inactive mutant or SLK small interfering RNAs inhibited cell proliferation and resulted in an accumulation of quiescent cells stimulated to re-enter the cell cycle in the G(2) phase. Cultures expressing the mutant SLK displayed a normal pattern of cyclin D, E, and B expression but failed to down-regulate cyclin A levels, suggesting that they cannot proceed through M phase. In addition, these cultures displayed low levels of both phospho-H3 and active p34/cdc2 kinase. Overexpression of active SLK resulted in ectopic spindle assembly and the induction of cell cycle re-entry of Xenopus oocytes, suggesting that SLK is required for progression through G(2) upstream of H1 kinase activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available