4.6 Article

dMi-2 chromatin binding and remodeling activities are regulated by dCK2 phosphorylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 51, Pages 41912-41920

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M507084200

Keywords

-

Ask authors/readers for more resources

(A) plethora of ATP-dependent chromatin-remodeling enzymes have been identified during the last decade. Many have been shown to play pivotal roles in the organization and expression of eukaryotic genomes. It is clear that their activities need to be tightly regulated to ensure their coordinated action. However, little is known about how ATP-dependent remodelers are regulated at the molecular level. Here, we have investigated the ATP-dependent chromatin remodeling enzyme Mi-2 of Drosophila melanogaster. Radioactive labeling of S2 cells reveals that dMi-2 is a phosphoprotein in vivo. dMi-2 phosphorylation is constitutive, and we identify dCK2 as a major dMi-2 kinase in cell extracts. dCK2 binds to and phosphorylates a dMi-2 N-terminal region. Dephosphorylation of recombinant dMi-2 increases its affinity for the nucleosome substrate, nucleosome-stimulated ATPase, and ATP-dependent nucleosome mobilization activities. Our results reveal a potential mechanism for regulation of the dMi-2 enzyme and point toward CK2 phosphorylation as a common feature of CHD family ATPases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available