4.7 Article

Sequence-defined polypeptide-polymer conjugates utilizing reversible addition fragmentation transfer radical polymerization

Journal

MACROMOLECULES
Volume 38, Issue 26, Pages 10643-10649

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma0519415

Keywords

-

Ask authors/readers for more resources

Straightforward solid-phase-supported synthesis routes were presented to obtain novel oligopeptide-based reversible addition fragmentation transfer (RAFT) agents. These approaches include the coupling of a functional RAFT agent to a resin-bound peptide and the functionality switch of an oligopeptide ATRP macroinitiator into an oligopeptide transfer agent. The solid-phase-supported methods allowed easy purification of the transfer agents, making difficult column purification steps unnecessary. Well-defined conjugates comprising sequence-defined peptides and synthetic polymers could be accessed by applying RAFT polymerization techniques in combination with the peptide macrotransfer agents. Polymerization reactions of n-butyl acrylate were performed in solution, yielding peptide-polymer conjugates with controllable molecular weight and low polydispersities of around 1.1. The peptide-polymer conjugates were characterized using H-1 NMR spectroscopy and size exclusion chromatography (SEC), while the incorporation of the oligopeptide into the synthetic polymer and the preservation of the chirality were shown by circular dichroism (CD) spectroscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available