4.6 Article

Comparison of normalization methods for CodeLink Bioarray data

Journal

BMC BIOINFORMATICS
Volume 6, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2105-6-309

Keywords

-

Funding

  1. NHLBI NIH HHS [HL 073745-01, R21 HL079394, F32 HL78164-2, F32 HL078164, HL079394-01, R01 HL073745] Funding Source: Medline

Ask authors/readers for more resources

Background: The quality of microarray data can seriously affect the accuracy of downstream analyses. In order to reduce variability and enhance signal reproducibility in these data, many normalization methods have been proposed and evaluated, most of which are for data obtained from cDNA microarrays and Affymetrix GeneChips. CodeLink Bioarrays are a newly emerged, single-color oligonucleotide microarray platform. To date, there are no reported studies that evaluate normalization methods for CodeLink Bioarrays. Results: We compared five existing normalization approaches, in terms of both noise reduction and signal retention: Median (suggested by the manufacturer), CyclicLoess, Quantile, Iset, and Qspline. These methods were applied to two real datasets (a time course dataset and a lung disease-related dataset) generated by CodeLink Bioarrays and were assessed using multiple statistical significance tests. Compared to Median, CyclicLoess and Qspline exhibit a significant and the most consistent improvement in reduction of variability and retention of signal. CyclicLoess appears to retain more signal than Qspline. Quantile reduces more variability than Median in both datasets, yet fails to consistently retain more signal in the time course dataset. Iset does not improve over Median in either noise reduction or signal enhancement in the time course dataset. Conclusion: Median is insufficient either to reduce variability or to retain signal effectively for CodeLink Bioarray data. CyclicLoess is a more suitable approach for normalizing these data. CyclicLoess also seems to be the most effective method among the five different normalization strategies examined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available