4.6 Article

Effect of denaturation on the photochemistry of pyrimidine bases in isolated DNA

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2005.08.009

Keywords

DNA damage; UV radiation; pyrimidine dimers; DNA photochemistry; ionic strength; DNA structure

Ask authors/readers for more resources

The influence of denaturation on DNA photochemistry was studied by quantifying the yield of formation of all possible bipyrimidine photolesions within isolated genomic DNA samples exposed to UVC radiation. Effects of DNA melting was studied either by carrying out irradiation over a wide range of temperature (0-90 degrees C) or by decreasing the ionic strength of the solution at 30 degrees C. A first observation was a much larger decrease in the photoreactivity upon increasing the temperature in single-stranded than in double-stranded DNA. Secondly, formation of trans,syn cyclobutane dimers and, to a lesser extent, modification in the ratio between the yields of cyclobutane dimers and (6-4) photoproducts, were found to be other main features associated with denaturation. These results emphasize the modulating role of structure in the yield and nature of UV-induced DNA damage. (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available