4.6 Article

Maximal activation of skeletal muscle thin filaments requires both rigor myosin S1 and calcium

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 1, Pages 668-676

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505549200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL41776] Funding Source: Medline
  2. NIBIB NIH HHS [EB00209] Funding Source: Medline

Ask authors/readers for more resources

The regulation by calcium and rigor-bound myosin-S1 of the rate of acceleration of 2'-deoxy-3'-O-(N-methylanthraniloyl)ADP (mdADP) release from myosin-mdADP-P-i by skeletal muscle thin filaments (reconstituted from actin-tropomyosin-troponin) was measured using double mixing stopped-flow fluorescence with the nucleotide substrate 2'-deoxy-3'-O-(N-methylanthraniloyl). The predominant mechanism of regulation is the acceleration of product dissociation by a factor of similar to 200 by thin filaments in the fully activated conformation (bound calcium and rigor S1) relative to the inhibited conformation (no bound calcium or rigor S1). In contrast, only 2-3-fold regulation is due to a change in actin affinity such as would be expected by steric blocking of the myosin binding site of the thin filament by tropomyosin. The binding of one ligand (either calcium or rigor-S1) produces partial activation of the rate of product dissociation, but the binding of both is required to maximally accelerate product dissociation to a rate similar to that obtained with F-actin in the absence of regulatory proteins. The data support an allosteric regulation model in which the binding of either calcium or rigor S1 alone to the thin filament shifts the equilibrium in favor of the active conformation, but full activation requires binding of both ligands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available