4.6 Article

Macroscopic samples of polystyrene with ordered three-dimensional nanochannels

Journal

SOFT MATTER
Volume 2, Issue 1, Pages 57-59

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b513958a

Keywords

-

Ask authors/readers for more resources

Block copolymers containing a chemically degradable block are versatile precursors to nanoporous organic materials. Most work in this area has been accomplished in thin films. However, high surface area catalysis, separations, and nanotemplating can require monolithic samples with macroscopic pore volumes. Only a few examples of monolithic nanoporous materials from ordered block copolymers have been reported. In nearly all of these cases, the materials contain parallel cylindrical pores templated from the commonly observed hexagonally packed cylindrical (C) morphology adopted by AB diblock copolymers. To significantly expand the potential utility of this class of materials, we have targeted the bicontinuous gyroid (G) morphology in polystyrene block copolymers containing a degradable component. In this communication we describe the preparation of macroscopic samples of polystyrene with ordered three-dimensional nanochannels using either a polystyrene-polylactide (PS-PLA) block copolymer or a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer that adopts the G morphology. In addition, we show that a blend of these two materials also adopts the G morphology and that selective removal of the polylactide phase leaves a nanoporous material with poly(ethylene oxide)-fined pore walls that render the material water wettable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available