4.6 Article

Inducible expression of tau repeat domain in cell models of tauopathy - Aggregation is toxic to cells but can be reversed by inhibitor drugs

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 2, Pages 1205-1214

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M507753200

Keywords

-

Ask authors/readers for more resources

We generated several cell models of tauopathy in order to study the mechanisms of neurodegeneration in diseases involving abnormal changes of tau protein. N2a neuroblastoma cell lines were created that inducibly express different variants of the repeat domain of tau (tau(RD)) when exposed to doxycycline (Tet-On system). The following three constructs were chosen: (i) the repeat domain of tau that coincides with the core of Alzheimer paired helical filaments; (ii) the repeat domain with the deletion mutation Delta K280 known from frontotemporal dementia and highly prone to spontaneous aggregation; and (iii) the repeat domain with Delta K280 and two proline point mutations that inhibit aggregation. The comparison of wild-type, pro-aggregation, and anti-aggregation mutants shows the following. (a) Aggregation of tauRD is toxic to cells. (b) The degree of aggregation and toxicity depends on the propensity for beta-structure. (c) Soluble mutants of tauRD that cannot aggregate are not toxic. (d) Aggregation is preceded by fragmentation. (e) Fragmentation of tauRD in cells is initially due to a thrombin-like protease activity. (f) Phosphorylation of tau(RD) (at KXGS motifs) precedes aggregation but is not correlated with the degree of aggregation. (g) Aggregates of tauRD disappear when the expression is silenced, showing that aggregation is reversible. (h) Aggregation can be prevented by drugs and even pre-formed aggregates can be dissolved again by drugs. Thus, the cell models open up new insights into the relationship between the structure, expression, phosphorylation, aggregation, and toxicity of tauRD that can be used to test current hypotheses on tauopathy and to develop drugs that prevent the aggregation and degeneration of cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available