4.7 Article

SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 118, Issue 2, Pages 310-316

Publisher

WILEY
DOI: 10.1002/ijc.21357

Keywords

tumor growth; angiogenesis; SPARC; collagen; transglutaminase; neuroblastoma

Categories

Funding

  1. NCI NIH HHS [5P30CA60553] Funding Source: Medline
  2. NINDS NIH HHS [NS 049814] Funding Source: Medline

Ask authors/readers for more resources

Secreted protein, acidic and rich in cysteine (SPARC), is a multifunctional matricellular glycoprotein. In vitro, SPARC has antiangiogenic properties, including the ability to inhibit the proliferation and migration of endothelial cells stimulated by bFGF and VEGF. Previously, we demonstrated that platelet-derived SPARC also inhibits angiogenesis and impairs the growth of neuroblastoma tumors in vivo. In the present study, we produced rhSPARC in the transformed human embryonic kidney cell line 293 and show that the recombinant molecule retains its ability to inhibit angiogenesis. Although 293 cell proliferation was not affected by exogenous expression of SPARC in vitro, growth of tumors formed by SPARC-transfected 293 cells was significantly impaired compared to tumors comprised of wild-type cells or 293 cells transfected with a control vector. Consistent with its function as an angiogenesis inhibitor, significantly fewer blood vessels were seen in SPARC-transfected 293 tumors compared to controls, and these tumors contained increased numbers of apoptotic cells. Light microscopy revealed small nests of tumor cells surrounded by abundant stromal tissue in xenografts with SPARC expression, whereas control tumors were comprised largely of neoplastic cells with scant stroma. Mature, covalently cross-linked collagen was detected in SPARC-transfected 293 xenografts but not in control tumors. Our studies suggest that SPARC may regulate tumor growth by inhibiting angiogenesis, inducing tumor cell apoptosis and mediating changes in the deposition and organization of the tumor microenvironment. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available