4.6 Article

Delays, inaccuracies and anticipation in microscopic traffic models

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physa.2005.05.001

Keywords

transport processes; phase transitions; nonhomogeneous flows; transportation

Ask authors/readers for more resources

We generalize a wide class of time-continuous microscopic traffic models to include essential aspects of driver behaviour not captured by these models. Specifically, we consider (i) finite reaction times, (ii) estimation errors, (iii) looking several vehicles ahead (spatial anticipation), and (iv) temporal anticipation. The estimation errors are modelled as stochastic Wiener processes and lead to time-correlated fluctuations of the acceleration. We show that the destabilizing effects of reaction times and estimation errors can essentially be compensated for by spatial and temporal anticipation, that is, the combination of stabilizing and destabilizing effects results in the same qualitative macroscopic dynamics as that of the, respectively, underlying simple car-following model. In many cases, this justifies the use of simplified, physics-oriented models with a few parameters only. Although the qualitative dynamics is unchanged, multi-anticipation increase both spatial and temporal scales of stop-and-go waves and other complex patterns of congested traffic in agreement with real traffic data. Remarkably, the anticipation allows accident-free smooth driving in complex traffic situations even if reaction times exceed typical time headways. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available