4.6 Article

Entanglement of polymer chains in ultrathin films

Journal

LANGMUIR
Volume 22, Issue 2, Pages 742-748

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la051432w

Keywords

-

Ask authors/readers for more resources

This investigation aimed to clarify the issue of whether polymer chains are entangled in ultrathin films spin-coated onto substrates. This was done using a fluorescence probe method to observe the behavior of two types of poly(methyl methacrylate) (PMMA), one having a carbazolyl (Cz) moiety (PMMA-Cz) and the other having an anthryl (At) moiety (PMMA-At). In both cases, the moiety fraction was I unit for 400 units of polymer. We prepared ultrathin films (thickness: 4-88 nm) on quartz substrates from PMMA-Cz, PMMA-At, and a mixture of the two using a spin-coating method. When the PMMA films prepared from the mixture of the two PMMAs were excited at 292 nm, which is preferentially absorbed by Cz rather than At, the Cz fluorescence was found to be quenched dramatically while the At fluorescence increased significantly. This effect is due to the proximity of the Cz to the At, which permits the transfer of excitation energy between them. The average distance between Cz and At can be calculated using the Forster mechanism. When the ultrathin film thickness was between 12 and 88 nm, the average distance was found to be 2 nm. This is much shorter than the radii of gyration of the polymers. From this it is clear that two polymer molecules in an ultrathin film do experience entanglement, as has been hypothesized. Thus, we conclude that the difference between certain properties of ultrathin films and the properties of the same materials in bulk are not induced by a decrease in the level of polymer chain entanglement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available