4.8 Article

Imaging of ultrafast molecular elimination reactions

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 128, Issue 2, Pages 576-580

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja055658x

Keywords

-

Ask authors/readers for more resources

Ultrafast molecular elimination reactions are studied using the velocity map ion imaging technique in combination with femtosecond pump-probe laser excitation. A pump laser is used to initiate the dissociative reaction, and after a predetermined time delay a probe laser interrogates the molecular system. Ionic fragments are detected with a two-dimensional velocity map imaging detector providing detailed information about the energetic and vectorial properties of mass selected photofragments. In this paper we discuss the ultrafast elimination of molecular iodine, I-2, from IF2C-CF2I, where the iodine atoms originate from neighboring carbon atoms. By varying the femtosecond delay between pump and probe pulse, it is found that elimination of molecular iodine is a concerted process, although the two carbon-iodine bonds are not broken synchronously. Energetic considerations suggest that the crucial step in this fragmentation process is an electron transfer between the two iodine atoms in the parent molecule, which leads to Coulombic attraction and the creation of an ion-pair state in the molecular iodine fragment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available