4.6 Article

On the ionization state of the substrate in the active site of glutamate racemase.: A QM/MM study about the importance of being zwitterionic

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 110, Issue 2, Pages 717-725

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp054555y

Keywords

-

Ask authors/readers for more resources

Computer simulations on a QM/MM potential energy surface have been carried out to gain insights into the catalytic mechanism of glutamate racemase (MurI). Understanding such a mechanism is a challenging task from the chemical point of view because it involves the deprotonation of a low acidic proton by a relatively weak base to give a carbanionic intermediate. First, we have examined the dependency of the kinetics and thermodynamics of the racemization process catalyzed by MurI on the ionization state of the substrate (glutamate) main chain. Second, we have employed an energy decomposition procedure to study the medium effect on the enzyme-substrate electrostatic and polarization interactions along the reaction. Importantly, the present theoretical results quantitatively support the mechanistic proposal by Rios et al. [J. Am. Chem. Soc. 2000, 122, 9373-9385] for the PLP-independent amino acid racemases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available