4.8 Article

Anisotropic dielectric function in polar nanoregions of relaxor ferroelectrics

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.027601

Keywords

-

Ask authors/readers for more resources

The Letter suggests treating the infrared reflectivity spectra of single crystal perovskite relaxors as fine-grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly anisotropic in the phonon frequency range and the random orientation of the polarization at nanoscopic scale requires taking into account the inhomogeneous depolarization field. Employing a simple effective medium approximation (the Bruggeman symmetrical formula) turns out to be sufficient for reproducing all principal features of room temperature reflectivity of Pb(Mg1/3Nb2/3)O-3. One of the reflectivity bands is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The approach provides a general guide for systematic determination of the polar mode frequencies split by the inhomogeneous polarization at the nanometer scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available