4.8 Article

Huge excitonic effects in layered hexagonal boron nitride -: art. no. 026402

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.026402

Keywords

-

Ask authors/readers for more resources

The all-electron GW approximation energy band gap of bulk hexagonal boron nitride is shown to be of indirect type. The resulting computed in-plane polarized optical spectrum, obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function, is in excellent agreement with experiment and has a strong anisotropy compared to out-of-plane polarized spectrum. A detailed analysis of the excitonic structures within the band gap shows that the low-lying excitons belong to the Frenkel class and are tightly confined within the layers. The calculated exciton binding energy is much larger than that obtained by Watanabe et al. [Nat. Mater. 3, 404 (2004).] based on a Wannier model assuming h-BN to be a direct-band-gap semiconductor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available