4.7 Article

Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2149852

Keywords

-

Ask authors/readers for more resources

A time-resolved x-ray-diffraction experiment is presented that aims to study the recombination of laser-dissociated iodine molecules dissolved in CCl4. This process is monitored over an extended time interval from pico- to microseconds. The variations of atom-atom distances are probed with a milliangstrom resolution. A recent theory of time-resolved x-ray diffraction is used to analyze the experimental data; it employs the correlation function approach of statistical mechanics. The most striking outcome of this study is the experimental determination of time-dependent I-I atom-atom distribution functions. The structure of the CCl4 solvent changes simultaneously; the solvent thus appears as a reaction partner rather than an inert medium hosting it. Thermal expansion of the system is nonuniform in time, an effect due to the presence of the acoustic horizon. One concludes that a time-resolved x-ray diffraction permits real-time visualization of solvent and solute motions during a chemical reaction. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available