4.7 Article

Dissipative dynamics of laser induced nonadiabatic molecular alignment

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2130708

Keywords

-

Ask authors/readers for more resources

Nonadiabatic alignment induced by short, moderately intense laser pulses in molecules coupled to dissipative environments is studied within a nonperturbative density matrix theory. We focus primarily on exploring and extending a recently proposed approach [Phys. Rev. Lett. 95, 113001 (2005)], wherein nonadiabatic laser alignment is used as a coherence spectroscopy that probes the dissipative properties of the solvent. To that end we apply the method to several molecular collision systems that exhibit sufficiently varied behavior to represent a broad variety of chemical environments. These include molecules in low temperature gas jets, in room temperature gas cells, and in dense liquids. We examine also the possibility of prolonging the duration of the field free (post-pulse) alignment in dissipative media by a proper choice of the system parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available