4.7 Article

DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications

Journal

INORGANIC CHEMISTRY
Volume 45, Issue 2, Pages 787-797

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic051727x

Keywords

-

Ask authors/readers for more resources

A new ruthenium(II) complex, tetrabutylammonium [ruthenium (4-carboxylic acid-4'-carboxylate-2,2'-bipyridine)(4,4'-di(2-(3,6-dimethoxyphenyl)ethenyl)-2,2'-bipyridine)(NCS)(2)] (N945H), was synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The absorption spectrum of the N945H sensitizer is dominated by metal-to-ligand charge-transfer (MLCT) transitions in the visible region, with the lowest allowed MLCT bands appearing at 25 380 and 18 180 cm(-1). The molar extinction coefficients of these bands are 34 500 and 18 900 M-1 cm(-1), respectively, and are significantly higher when compared to than those of the standard sensitizer cis-dithiocyanatobis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(II). An INDO/S and density functional theory study of the electronic and optical properties of N945H and of N945 adsorbed on TiO2 was performed. The calculations point out that the top three frontier-filled orbitals have essentially ruthenium 4d (t(2g) in the octahedral group) character with sizable contribution coming from the NCS ligand orbitals. Most critically the calculations reveal that, in the TiO2-bound N945 sensitizer, excitation directs charge into the carboxylbipyridine ligand bound to the TiO2 surface. The photovoltaic data of the N945 sensitizer using an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I-2, 0.10 M guanidinium thiocyanate, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume ratio = 85:15) exhibited a short-circuit photocurrent density of 16.50 +/- 0.2 mA cm(-2), an open-circuit voltage of 790 +/- 30 mV, and a fill factor of 0.72 +/- 0.03, corresponding to an overall conversion efficiency of 9.6% under standard AM (air mass) 1.5 sunlight, and demonstrated a stable performance under light and heat soaking at 80 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available