4.5 Article

Oxide muonics: I. Modelling the electrical activity of hydrogen in semiconducting oxides

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 18, Issue 3, Pages 1061-1078

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/18/3/021

Keywords

-

Ask authors/readers for more resources

A shallow-to-deep instability of hydrogen defect centres in narrow-gap oxide semiconductors is revealed by a Study of the electronic structure and electrical activity of their muonium counterparts, a methodology that we term 'muonics'. In CdO, Ag2O and Cu2O, paramagnetic muonium centres show varying degrees of delocalization of the Singly Occupied orbital, their hyperfine constants spanning 4 orders Of Magnitude. PbO and RuO2, on the other hand, show only electronically diamagnetic muon states, mimicking those of interstitial protons. Muonium in CdO shows shallow-donor behaviour, dissociating between 50 and 150 K; the effective ionization energy of 0.1 eV is at some variance with the effective-mass model but illustrates the possibility of hydrogen doping inducing n-type conductivity as in the wider-gap oxide, ZnO. For Ag2O, the principal donor level is deeper (0.25 eV) but ionization is nonetheless complete by room temperature. Striking examples of level-crossing and RF resonance spectroscopy reveal a more complex interplay of several metastable states in this case. In Cu2O, muonium has quasi-atomic character and is stable to 600 K, although the electron orbital is Substantially more delocalized than in the trapped-atom states known in certain wide-gap dielectric oxides. Its eventual disappearance towards 900 K, with an effective ionization energy of 1 eV, defines an electrically active level near mid-gap in this material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available