4.3 Article

Coverage by directional sensors in randomly deployed wireless sensor networks

Journal

JOURNAL OF COMBINATORIAL OPTIMIZATION
Volume 11, Issue 1, Pages 21-41

Publisher

SPRINGER
DOI: 10.1007/s10878-006-5975-x

Keywords

directional sensors; mathematical programming; optimization; distributed algorithm; scheduling; network lifetime

Ask authors/readers for more resources

We study a novel coverage by directional sensors problem with tunable orientations on a set of discrete targets. We propose a Maximum Coverage with Minimum Sensors (MCMS) problem in which coverage in terms of the number of targets to be covered is maximized whereas the number of sensors to be activated is minimized. We present its exact Integer Linear Programming (ILP) formulation and an approximate (but computationally efficient) centralized greedy algorithm (CGA) solution. These centralized solutions are used as baselines for comparison. Then we provide a distributed greedy algorithm (DGA) solution. By incorporating a measure of the sensors residual energy into DGA, we further develop a Sensing Neighborhood Cooperative Sleeping (SNCS) protocol which performs adaptive scheduling on a larger time scale. Finally, we evaluate the properties of the proposed solutions and protocols in terms of providing coverage and maximizing network lifetime through extensive simulations. Moreover, for the case of circular coverage, we compare against the best known existing coverage algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available