4.6 Article

Development of biobased synthetic fluids: Application of molecular modeling to structure-physical property relationship

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 45, Issue 3, Pages 928-933

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie0509185

Keywords

-

Ask authors/readers for more resources

Biobased synthetic fluids are preferred alternatives to petroleum-based products due to their nontoxic and ecofriendly nature. Recent developments in biobased synthetic lubricants are a result of their comparable performance properties with mineral oils for industrial and automotive applications. These synthetic fluids can be chemically custom designed for a specific application. To develop an optimized molecule that can translate performance properties comparable to or at par with existing petroleum-based products, via chemical synthesis pathway alone, will be an expensive and time-consuming exercise. Molecular modeling of desired compounds and subsequent computation of their minimum energy profile, steric environment, and electron charge density distribution, etc., prior to actual synthesis, can shed valuable information on their physicochemical performance properties. Based on such information, chemical synthesis can be focused only on the promising molecules. Calculations based on equilibrium geometries were optimized using AMI semiempirical molecular orbital models. It was observed that ring opening of the triacylglycerol epoxy group and subsequent derivatization of the epoxy carbons can improve the oxidation and low-temperature stability of these synthetic lubricant base oils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available