4.6 Article

Persistent current and Drude weight in mesoscopic rings

Journal

PHYSICAL REVIEW B
Volume 73, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.075109

Keywords

-

Ask authors/readers for more resources

We study the persistent current and the Drude weight of a system of spinless fermions, with repulsive interactions and a hopping impurity, on a mesoscopic ring pierced by a magnetic flux, using a density matrix renormalization group (DMRG) algorithm for complex fields. Both the Luttinger liquid (LL) and the charge density wave (CDW) phases of the system are considered. Under a Jordan-Wigner transformation, the system is equivalent to a spin-1/2 XXZ chain with a weakened exchange coupling. We find that the persistent current changes from an algebraic to an exponential decay with the system size, as the system crosses from the LL to the CDW phase with increasing interaction U. We also find that in the interacting system, the persistent current is invariant under the impurity transformation rho -> 1/rho, for large system sizes, where rho is the defect strength. The persistent current exhibits a decay that is in agreement with the behavior obtained for the Drude weight. We find that in the LL phase the Drude weight decreases algebraically with the number of lattice sites N, due to the interplay of the electron interaction with the impurity, while in the CDW phase, it decreases exponentially, defining a localization length which decreases with increasing interaction and impurity strength. Our results show that the impurity and the interactions always decrease the persistent current, and imply that the Drude weight vanishes in the limit N ->infinity in both phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available