4.7 Review

Mechanisms of genetic robustness in RNA viruses

Journal

EMBO REPORTS
Volume 7, Issue 2, Pages 168-173

Publisher

WILEY
DOI: 10.1038/sj.embor.7400636

Keywords

fitness; deleterious mutations; quasi-species; genetic robustness; virus evolution

Ask authors/readers for more resources

Two key features of RNA viruses are their compacted genomes and their high mutation rate. Accordingly, deleterious mutations are common and have an enormous impact on viral fitness. In their multicellular hosts, robustness can be achieved by genomic redundancy, including gene duplication, diploidy, alternative metabolic pathways and biochemical buffering mechanisms. However, here we review evidence suggesting that during RNA virus evolution, alternative robustness mechanisms may have been selected. After briefly describing how genetic robustness can be quantified, we discuss mechanisms of intrinsic robustness arising as consequences of RNA-genome architecture, replication peculiarities and quasi-species population dynamics. These intrinsic robustness mechanisms operate efficiently at the population level, despite the mutational sensitivity shown by individual genomes. Finally, we discuss the possibility that viruses might exploit cellular buffering mechanisms for their own benefit, producing a sort of extrinsic robustness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available